




# LCA analysis of INDUSTRIAL WOOD PACKAGING

### SUMMARY SHEET LCA WOOD PACKAGING

| Prouduct name | Industrial Wood packaging and derivatives                                                                                                                                                              |                  |  |  |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|
| ISO Standards | <b>ISO</b> 14040:2021 Environmental management. Life cycle assessment. Principles and frameworks<br><b>ISO</b> 14044:2014 Environmental management. Life cycle assessment. Requirements and guidelines | FEDERLEGNOARREDO |  |  |  |
| PCR reference | PCR Packaging 2019:13                                                                                                                                                                                  | FIRENZE          |  |  |  |

### **Product description**





Wooden box for transporting machinery and/or industrial equipment of any kind and special products. Components:

- **Bottom**, Spruce boards + spruce beams.
- Header, OSB Panels + spruce boards.
- Sides, OSB Panels + spruce boards.
- Lid, OSB Panels + spruce boards.

Slots are provided on both OSB panels and longitudinal beams to allow the passage of straps during transport.

Wood and wood derivatives certified for Sustainable Forest Management (SFM).

### **Productive process**

**1)** Primary resources finding (OSB - Spruce beams- Spruce boards).

**2)** Cutting OSB panels to size with automatic panel sizing machine.

- **3)** Milling Slots on OSB panels for sides with CNC pantograph
- 4) Cut to size spruce boards and spruce beams with
- automatic wood pack cutter.
- **5)** Milling slots on spruce beams with CNC Pantograph.
- 6) Pneumatic manual packing assembly.

### **External dimensions of the package**

#### Bottom

Spruce boards floor: 113 X 10 X 2,3 cm Longitudinal spruce beams: 240 X 11 X 9,5 cm

#### Header

OSB paneling: 119,4 X 137,6 X 0,9 cm Spruce crossbars: 113 X 10 X 2,3 cm Spruce uprights: 113 X 10 X 2,3 cm

#### Sides

OSB paneling: 237,6 X 149 X 0,9 cm Spruce crossbars: 238 X 10 X 2,3 cm Spruce uprights: 113 X 10 X 2,3 cm

• Lid

OSB paneling: 240 X 120 X 0,9 cm Spruce stringers: 238 X 10 X 2,3 cm Spruce stringers: 96,5 X 10 X 2,3 cm

### Weight

- Bottom: 41,9 Kg
- Header: 26,5 Kg
- Sides: 52,9 Kg
- Lid: 22,8 Kg

Total weight: 144,1Kg

### Volumes

- External volume: 4,3 m<sup>3</sup>
- Internal volume: 3,5 m<sup>3</sup>

### **Materials**

- Spruce: 85,04 kg (53,79 %)
- OSB: 59,01 kg (37,33 %)
- Steel: 14,04 kg (8,88 %)

### System boundaries

The life cycle stages of industrial packaging included in the LCA analysis are those related to processes from cradle (including forestry) to grave: **A1- A2 - A3 - A4 - C3**, excluding use stages. The end-of-life phase considers wood prepared for recycling and associated lost emissions.

### **Functional unit/Declared**

1 (a) wood industrial package and derivatives

### **Inventory Analysis (LCI)**

Primary data collected directly at the company during the production process: Energy consumption measured with **HTGSC57** instrument. Secondary data taken from sector-specific databases during the modelling phase.

### Final disposal (C3)

The final disposal of wood package is splitted as:

| RECYCLING       | Spruce <b>(93%)</b><br>OSB <b>(98%)</b><br>Steel <b>(90%)</b> |
|-----------------|---------------------------------------------------------------|
| COMPOSTING      | Wood <b>(3%)</b>                                              |
| WASTE TO ENERGY | Wood (4%)                                                     |

ACTIVITIES CARRIED OUT BY THE **DAGRI** AND **DIEF** DEPARTMENTS OF THE UNIVERSITY OF FLORENCE

assoimballaggi@federlegnoarredo.it

2

### SUMMARY SHEET LCA WOOD PACKAGING: **RESULTS AND SCENARIOS**





| Imp                             | act Categories                            | Unit                                 | Upstream  | Core     | Downstream | Total     |
|---------------------------------|-------------------------------------------|--------------------------------------|-----------|----------|------------|-----------|
| Global                          | Fossil                                    | kg CO2 eq.                           | 1,66E+01  | 3,25E+00 | 4,25E+00   | 2,41E+01  |
|                                 | Biogenic                                  | kg CO2 eq.                           | -2,30E+02 | 3,42E+00 | 8,51E+00   | -2,18E+02 |
| Warming<br>Potential<br>(GWP)   | Land use and land<br>transformation       | kg CO2 eq.                           | 7,22E-02  | 2,67E-02 | 2,75E-01   | 3,74E-01  |
| -                               | Total                                     | kg CO2 eq.                           | -2,13E+02 | 6,69E+00 | 1,30E+01   | -1,94E+02 |
| Ozone La                        | ayer Depletion (ODP)                      | kg CFC 11 eq.                        | 2,20E-07  | 8,70E-12 | 1,10E-08   | 2,31E-07  |
| Acidific                        | ation Potential (AP)                      | mol H+ eq.                           | 9,92E-02  | 5,20E-03 | 3,60E+00   | 3,70E+00  |
| Eutrophicatio                   | Aquatic freshwater                        | kg P eq                              | 9,26E-04  | 1,26E-05 | -1,13E-03  | -1,91E-04 |
| n Potential                     | Aquatic marine                            | kg N eq                              | 3,56E-02  | 1,61E-03 | 1,07E-01   | 1,44E-01  |
| (EP)                            | Aquatic terrestrial                       | mol N eq.                            | 3,89E-01  | 1,90E-02 | 1,66E+01   | 1,70E+01  |
|                                 | mical Oxidant Creation<br>otential (POCP) | kg NMVOC<br>eq.                      | 1,13E-01  | 3,93E-03 | 9,92E-01   | 1,11E+00  |
| Abiotic                         | Metals and minerals                       | kg Sb eq                             | 6,97E-06  | 2,58E-07 | -8,24E-06  | -1,01E-06 |
| Depletion<br>Potential<br>(ADP) | Fossil resources                          | MJ, net<br>calorific value           | 2,20E+02  | 4,39E+01 | 1,33E+02   | 3,97E+02  |
|                                 | Water use                                 | m <sup>3</sup> world eq.<br>deprived | 2,50E+00  | 1,92E+01 | 2,61E+01   | 4,78E+01  |

Impact for Categories

The table beside shows the cradleto-grave life cycle impacts of industrial wood packaging and derivatives (SFM certified), excluding the use phase.

### Most relevant Impacts

The most important impacts for this study are those concerning Global Warming Potential (GWP):

- GWP Fossil = 24,1 kg CO<sub>2</sub> eq.
- GWP Biogenic = -218 kg CO<sub>2</sub> eq.
- GWP Land use and land transformation = 0,37 kg CO<sub>2</sub> eq.
- GWP Total = -194 kg CO<sub>2</sub> eq.

### Conclusions

Analysis of the environmental impacts of wood and wood-derivative packaging shows an excellent ecoprofile product, particularly related to the use of biogenic materials that offer an advantage due to their ability to absorb CO<sub>2</sub> during the formation phase, while offsetting emissions from fossil carbon. In addition, the foregone emissions from packaging recycling further contribute to achieving a negative GWP. These significant benefits result from the use of material from certified Sustainable Forest Management (SFM).

### Scenario with recycling + Certified material SFM

Below, it is shown how the impacts would vary if the supply chain did not have a recycling system:

- GWP Fossil = 24,1 kg CO<sub>2</sub> eq.
- GWP Biogenic = 10,17 kg CO<sub>2</sub> eq.
- GWP Land use and land transformation = 0,37 kg CO<sub>2</sub> eq.
- GWP Total = +34,64 kg CO<sub>2</sub> eq.

### Scenario without recycling + NON-**Certified material SFM**

Below it is shown how the impacts would vary if the supply chain did not have a recycling system and the input material was not certified for Sustainable Forest Management (SFM):

- GWP Fossil = 24,1 kg CO<sub>2</sub> eq.
- GWP Biogenic = 238,33 kg CO<sub>2</sub> eq.
- GWP Land use and land transformation = 0,37 kg CO<sub>2</sub> eq.
- GWP Total = +262,81 kg CO<sub>2</sub> eq.

The results of the study show that industrial wood packaging has a climate change impact (GWP total) of -194kg CO<sub>2</sub> eq. when recycling is cosnidering as end-of-life process and certified input material is used. Whitout recycling as an end-of-life process, the GWP total becomes positive, +34.64kg of CO<sub>2</sub> eq. If both recycling and certified input material are removed, the 3 GWP total increases to +262.81 kg CO<sub>2</sub> eq.





# LCA analysis of WOODEN FOLDENING BOX

### SUMMARY SHEET LCA WOODEN FOLDING BOX

| Prouduct name | Wooden foldening box and derivatives                                                                                                                                                           |  |  |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ISO Standards | ISO 14040:2021 Environmental management. Life cycle<br>assessment. Principles and frameworks<br>ISO 14044:2014 Environmental management. Life cycle<br>assessment. Requirements and guidelines |  |  |  |
| PCR reference | PCR Packaging 2019:13                                                                                                                                                                          |  |  |  |

### **Product description**

The plywood folding box is suitable for sea, air and land transport of any product. The sides are made of plywood providing a high degree of resistance to stresses due to loads during transport.

The corners, which are the points of greatest criticality, are made of galvanized steel. The profiles have slots that, when interlocked with the hooks applied to the sides, simplify assembly and fastening operations. It is customizable with logos, graphics, handles, hooks, dividers and more. The wood and derivatives used are certified for Sustainable Forest Management (SFM).

#### Components:

- Bottom, Spruce boards + Spruce beams
- **Header**, plywood panels + Spruce boards
- Sides, plywood panels + Spruce boards
- Lid, plywood panels + Spruce boards

### **Productive process**

External

Package Bottom

120 x 80 cm

**Materials** 

Sides

• Lid 120 x 80 cm

dimensions of the

119,2 x 79,2 x 75,0 cm

**1)** Primary resources finding (Spruce beams - Spruce boards - Steel).

- **2)** Cut plywood panels to size with cutting machine.
- **3)** Marking with ink stamping machines.
- **4)** Cut to size spruce panels and spruce beamss with automatic wood pack cutter.
- 5) Create borders (Cover-frame) with Line create border.
- **6)** Assembling lid and sides with Baykal pressing machine.

**7)** Assembling with CNC robot for nailing and automatic assembling machine.

Volumes



### **System boundaries**

The life cycle stages of industrial packaging included in the LCA analysis are those related to processes from cradle (including forestry) to grave: **A1- A2 - A3 - A4 - C3**, excluding use stages. The end-of-life phase considers wood prepared for recycling and associated lost emissions.

# External volume: 0,69 m<sup>3</sup> Functional unit/Declared Internal volume: 0,87 m<sup>3</sup> Functional unit/Declared I (a) wooden foldening box and derivatives Weight Bottom: 19,9 Kg Sides: 12,5 Kg Lid: 4,9 Kg Total weight: 37,3 Kg

### Final disposal (C3)

The final disposal of the wood package is:

| <ul> <li>Spruce wood: 17,1 kg (29,45 %)</li> <li>Plywood: 36,2 kg (62,35 %)</li> <li>Wood chips: 2,4 kg (4,13%)</li> </ul> | Spruce (93%)<br>RECYCLING Plywood (98%)<br>Steel (90%) |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| <ul> <li>Steel: 2,36 kg (4,06%)</li> <li>Ink: 0,003 kg (0,01 %)</li> </ul>                                                 | COMPOSTINGWood (3%)WASTE TO ENERGYWood (4%)5           |

# SUMMARY SHEET LCA WOODEN FOLDING BOX:RESULTS AND SCENARIOSFigure 1Image: State of the state

### **Impact for Categories**

The two tables below present the cradle-to-grave life cycle impacts of a folding box made of wood and wood derivatives (SFM certified), excluding the use phase. The first figure refers to the **Italian** context, while the second table refers to the **European** context.

| Imp                                                | act Categories                      | Unit                                 | Upstream  | Core     | Downstream | Total     |
|----------------------------------------------------|-------------------------------------|--------------------------------------|-----------|----------|------------|-----------|
| Global<br>Warming<br>Potential<br>(GWP)            | Fossil                              | kg CO2 eq.                           | 1,79E+01  | 1,16E+01 | 1,37E+00   | 3,09E+01  |
|                                                    | Biogenic                            | kg CO2 eq.                           | -8,23E+01 | 2,52E-02 | 2,23E+00   | -8,00E+01 |
|                                                    | Land use and land<br>transformation | kg CO2 eq.                           | 3,08E-02  | 1,33E-01 | 5,74E-03   | 1,70E-01  |
|                                                    | Total                               | kg CO2 eq.                           | -6,44E+01 | 1,18E+01 | 3,61E+00   | -4,90E+01 |
| Ozone Layer Depletion (ODP)                        |                                     | kg CFC 11 eq.                        | 3,53E-07  | 9,55E-09 | 1,19E-09   | 3,64E-07  |
| Acidifica                                          | Acidification Potential (AP)        |                                      | 1,14E-01  | 2,17E-02 | 1,09E-02   | 1,47E-01  |
|                                                    | Aquatic freshwater                  | kg P eq                              | 9,94E-04  | 4,84E-05 | 3,17E-06   | 1,05E-03  |
| Eutrophication<br>Potential (EP)                   | Aquatic marine                      | kg N eq                              | 2,82E-02  | 6,67E-03 | 1,41E-03   | 3,63E-02  |
|                                                    | Aquatic terrestrial                 | mol N eq.                            | 3,10E-01  | 8,14E-02 | 4,25E-02   | 4,34E-01  |
| Photochemical Oxidant Creation<br>Potential (POCP) |                                     | kg NMVOC<br>eq.                      | 8,66E-02  | 1,59E-02 | 5,37E-03   | 1,08E-01  |
| Abiotic<br>Depletion<br>Potential (ADP)            | Metals and minerals                 | kg Sb eq                             | 1,86E-05  | 4,70E-07 | 1,58E-08   | 1,91E-05  |
|                                                    |                                     | MJ, net                              |           |          |            |           |
|                                                    | P) Fossil resources                 | calorific<br>value                   | 2,29E+02  | 1,51E+02 | 1,11E+01   | 3,91E+02  |
| Water use                                          |                                     | m <sup>3</sup> world eq.<br>deprived | 4,72E+00  | 6,95E-01 | 1,53E-01   | 5,57E+00  |

### **ITALIAN CONTEXT**

Distance of transportation taken: **100 km** 

### Most relevant impacts:

The most important impacts for this study are those concerning Global Warming Potential (GWP):

- GWP Fossil = **30,9 kg CO<sub>2</sub> eq.**
- GWP Biogenic = -80 kg CO<sub>2</sub> eq.
- GWP Land use and land transformation = 0,17 kg CO<sub>2</sub> eq.
- GWP Total = -49 kg CO<sub>2</sub> eq.

| Impa                                               | act Categories                      | Unit                                 | Upstream  | Core     | Downstream | Total     |
|----------------------------------------------------|-------------------------------------|--------------------------------------|-----------|----------|------------|-----------|
| Global                                             | Fossil                              | kg CO₂ eq.                           | 1,79E+01  | 1,16E+01 | 2,67E+00   | 3,22E+01  |
|                                                    | Biogenic                            | kg CO₂ eq                            | -8,23E+01 | 2,52E-02 | 2,24E+00   | -8,00E+01 |
| Warming<br>Potential<br>(GWP)                      | Land use and land<br>transformation | kg CO₂ eq                            | 3,08E-02  | 1,33E-01 | 1,77E-02   | 1,82E-01  |
|                                                    | Total                               | kg CO₂ eq                            | -6,44E+01 | 1,18E+01 | 4,93E+00   | -4,77E+01 |
| Ozone Layer Depletion (ODP)                        |                                     | kg CFC 11<br>eq.                     | 3,53E-07  | 9,55E-09 | 1,19E-09   | 3,64E-07  |
| Acidifica                                          | Acidification Potential (AP)        |                                      | 1,14E-01  | 2,17E-02 | 1,29E-02   | 1,49E-01  |
| Eutrophication<br>Potential (EP)                   | Aquatic<br>freshwater               | kg P eq                              | 9,94E-04  | 4,84E-05 | 7,89E-06   | 1,05E-03  |
|                                                    |                                     | kg N eq                              | 2,82E-02  | 6,67E-03 | 2,05E-03   | 3,69E-02  |
|                                                    | Aquatic terrestrial                 | mol N eq.                            | 3,10E-01  | 8,14E-02 | 5,01E-02   | 4,42E-01  |
| Photochemical Oxidant Creation<br>Potential (POCP) |                                     | kg NMVOC<br>eq.                      | 8,66E-02  | 1,59E-02 | 1,50E-01   | 2,53E-01  |
| Abiotic<br>Depletion<br>Potential (ADP             | Metals and minerals                 | kg Sb eq                             | 1,86E-05  | 4,70E-07 | 1,00E-07   | 1,92E-05  |
|                                                    | P) Fossil resources                 | MJ, net<br>calorific<br>value        | 2,29E+02  | 1,51E+02 | 2,86E+01   | 4,09E+02  |
| Water use                                          |                                     | m <sup>3</sup> world<br>eq. deprived | 4,72E+00  | 6,95E-01 | 1,68E-01   | 5,58E+00  |

### **EUROPEAN CONTEXT**

Distance of transportation taken: 400 km

### Most relevant impacts:

The most important impacts for the purpose of the study are those concerning Global Warming Potential (GWP):

- GWP Fossil = 32,2 kg CO<sub>2</sub> eq.
- GWP Biogenic = -80 kg CO<sub>2</sub> eq.
- GWP Land use and land transformation = 0,18 kg CO<sub>2</sub> eq.
- GWP Total = -47,7 kg CO<sub>2</sub> eq.

# SUMMARY SHEET LCA WOODEN FOLDING BOX:RESULTS AND SCENARIOSImage: Constraint of the second se

### Conclusions

Analysis of the environmental impacts of wood and wood-derivative packaging shows an excellent ecoprofile product, particularly related to the use of biogenic materials that offer an advantage due to their ability to absorb  $CO_2$  during the formation phase, while offsetting emissions from fossil carbon. In addition, the foregone emissions from packaging recycling further contribute to achieving a negative GWP. These significant benefits result from the use of material from certified sustainable forest management.

## Scenario without recycling + Certified material SFM (italian context)

Below, it is shown how the impacts would vary if the supply chain did not have a recycling system:

- GWP Fossil = 53,7 kg CO<sub>2</sub> eq.
- GWP Biogenic = -23,84 kg CO<sub>2</sub> eq.
- GWP Land use and land transformation = **0,20 kg CO₂ eq.**
- GWP Total = **30,06 kg CO<sub>2</sub> eq.**

### Scenario without recycling + NON-Certified material SFM (italian context)

Below it is shown how the impacts would vary if the supply chain did not have a recycling system and the input material was not certified for sustainable forest management:

- GWP Fossil = 53,7 kg CO<sub>2</sub> eq.
- GWP Biogenic = 32,36 kg CO<sub>2</sub> eq.
- GWP Land use and land transformation = 0,20 kg CO<sub>2</sub> eq.
- GWP Total = **86,26 kg CO<sub>2</sub> eq.**

The results of the study show that wooden folding box has a climate change impact (GWP total) of **-47.7 kg CO<sub>2</sub> eq** when recycling is cosnidering as end-of-life process and certified input material is used. Whitout recycling as an end-of-life process, the GWP total becomes positive, **+30.06 kg of CO<sub>2</sub> eq**. If both recycling and certified input material are removed, the GWP total increases to **+86.26 kg of CO<sub>2</sub> eq**.